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Abstract

Mustard gas is a simple molecule with a deadly past. First used as a chemical weapon in World
War |, its simple formulation has raised concerns over its use by terrorist organizations and
rogue governments. Mustard gas is a powerful vesicant and alkylating agent and confers
painful blisters on epithelial surfaces and increases incidence of cancer. The mechanism of
mustard gas toxicity and tumorigenesis is not well understood, but is thought to be mediated
by its ability to induce oxidative stress and DNA damage. Centrosomes are small, non-
membrane bound organelles that direct the segregation of chromosomes during mitosis
through the formation of the bipolar mitotic spindle. Cells with more or less than two
centrosomes can segregate their chromosomes unequally, resulting in chromosome instability,
a common phenotype of cancer cells. Inour studies, we show that subtoxic levels of 2-
chloroethyl ethylsulfide (2-CEES), a mustard gas analog, also induce centrosome amplification
and chromosome instability in cells, which may hasten the mutation rate necessary for
tumorigenesis. These studies offer an explanation why those exposed to mustard gas exhibit

higher incidences of cancer than unexposed individuals of the same cohort.

Introduction

Mustard gas (B, B’-dichloroethyl sulfide) was originally synthesized in 1822 by a French chemist
named César-Mansuete Despretz (Despretz, 1822). Since then, several different analogs and
derivatives of mustard gas have been developed including the nitrogen and oxygen mustards
and half mustard, 2-chloroethy ethylsulfide (2-CEES)(Wang et al., 2012). As for mustard gas, its

most documented role in human history include its use as a chemical weapon during World
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Wars | and Il and the Iran-Irag war in the 1980s (Duchovic and Vilensky, 2007; Hay, 1993). Most
recently, concerns have been raised about countries like Libya and Syria stockpiling mustard gas
munitions and whether or not that is a threat to other countries or even their own citizens
(Duelfer, 2012; Hough, 2011).

Mustard gas is a vesicant (blistering agent) and is typically encountered exogenously, restricting
its acute effects primarily to the skin, lungs, and eye (Aasted et al., 1987; Smith et al., 1995). lIts
chronic effects include dermal, ocular and respiratory problems as well (Nishimoto et al., 1970;
Scholz and Woods, 1947), but neurological (Gadsden-Gray et al., 2012; Thomsen et al., 1998)
and reproductive complications (Azizi et al., 1995), and cancers of various organs have also
been observed (Doi etal., 2011; Iravani et al., 2007; Zojaji et al., 2009), suggesting that mustard
gas can elicit systemic effects. Of interestto our lab is the higher incidence of cancer observed
in those that have manufactured mustard gas (Easton et al., 1988; Nishimoto et al., 1983;
Takeshima et al., 1994; Yamakido et al., 1996).

Chromosome instability (CIN), also called genetic instability or genomic instability, is a common
phenotype of cancers (Pihan et al., 1998). It is characterized by the gain and/or loss of
chromosomes, which is thought to hasten the mutation rate necessary for tumorigenesis.
There are many mechanisms that are thought to drive chromosome instability, one of which is
through centrosome amplification. Centrosomes are small, non-membrane bound organelles
that are composed of two microtubule-based centrioles surrounded by a protein matrix called
the pericentriolar material. Centrosomes function to organize the microtubule (MT) network
and play a central role in organizing the bipolar mitotic spindle. During G; of the cell cycle, each

daughter cell of the previous mitotic event has only one centrosome. For the next mitotic
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event to be successful, the cell must duplicate the single centrosome only once during S phase.
As the cell moves into mitosis, the two centrosomes can then form the bipolar mitotic spindle.
If a cell duplicates its centrosome more than once, multipolar spindles can form during mitosis
and chromosomes can segregate unequally, leading to CIN (Fukasawa, 2005).

Many proteins have been shown to regulate centrosome duplication so that only two
centrosomes are present as a cell enters mitosis. Some of these proteins function as targets or
mediators of mustard gas toxicity, including p53, poly(ADP-ribose) polymerase (PARP), and NF-
kB (Bhat et al., 2000; Fukasawa, 2005; Liu et al., 2011; Ruff and Dillman, 2010; Tong etal.,
2007). Additionally, oxidative stress, which is generated by mustard gas (Pal et al., 2009), has
been shown to induce centrosome amplification in cells treated with hydrogen peroxide (Chae
et al., 2005). Thus, we hypothesized that mustard gas might adversely affect centrosome
biology, specifically, centrosome number, which might contribute to the increase in cancer
incidences observed in those that manufacture the chemical. Here we show for the first time
that 250 uM 2-CEES induces centrosome amplification in both Saos2 and NIH3T3 cells.
Additionally, we show that exposure of cells to 250 uM 2-CEES increases chromosome

instability as exhibited by an increase in aneuploidy in treated cells.

Methods and Materials

Cell Culture
Saos2 (human osteosarcoma) and NIH3T3 (murine embryonic fibroblasts) cells were obtained
from ATCC (HTB-85 and CRL-1658, respectively) and cultured in complete media: Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/ml
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penicillin and 100 pg/ml streptomycin (Hyclone) for maintenance and all experiments. Cells
were incubated in an environment of 10% CO; and 37°C in a humidified incubator for all

experiments.

Experimental Design

For all experiments, 80-90% confluent plates were washed with PBS and then trypsinized with
TrypLE Express (Life Technologies) followed by gentle agitation to dislodge attached cells.
Dislodged cells were then harvested in a volume of complete DMEM necessary to produce a
hemacytometer count of 200-300 live cells via trypan blue assay (See below). Cells were then
plated in dishes at a density that would result in about 85% confluency after overnight
incubation. Cells were then incubated in 2-CEES for 24 hours, after which a specific assay was

performed.

Trypan Blue Assay

Cells were plated in 6-well plates and treated with 2-CEES as previously mentioned. After 2-
CEES treatment, each well was trypsinized with 50 ul of TrypLE Express (Life Technologies) and
harvested with 350 pl of complete DMEM. 50 pl of the 400 ul cell suspension was then diluted
1:1 with trypan blue and the number of live cells was immediately counted on four large
squares (1 mm? each) of a hemacytometer. The total live cell density was then determined by

the following equation.
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Live cell count in 4 large
squares

x 2 (dilution factor) = cells/ml

.0004
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Resazurin Assay

Cells were plated in 24-well plates and treated with 2-CEES as previously mentioned.
Additionally, a well containing media only was prepared for each 2-CEES concentration to actas
a blank. After 2-CEES treatment, 4.4 mM resazurin (Sigma) was prepared fresh in water and
diluted 1:100 in each well (experimental and blank wells) followed by a two hour incubation.
Fluorescence levels in each well were measured at 550 nm (excitation) and 600 nm (emission)
for 1.2 seconds using a CareStream Image Station 4000MMPRO imaging system. A 51 x 51 pixel
region of interest (ROI) was generated over the center of each well and the mean intensity of
each well was measured. Final fluorescence values were determined by subtracting the blank
value of each 2-CEES concentration from the same well containing cells (600 nmces — 600

NMpiank) and normalized to 0 uM 2-CEES treated wells.

Immunofluorescence

Cells were grown and treated on glass coverslips. After2-CEES treatment, cells were washed in
PBS (135 mM NaCl, 2.7 mM KCl, 4.3 mM Na;HPQOg4, 1.4 mM KH3PO4, pH 7.2) and fixed in 4%
formalin/methanol (Fisher) for 20 minutes at room temperature followed by permeabilization
with 1% Nonidet P-40 (Fisher) in PBS for 10 minutes at room temperature. Cells were blocked
in 15% NGS (Life Technologies) for 1 hour and then gently washed by dipping coverslips into
three separate beakers of PBS. Cells were then incubated in rabbit-anti-y tubulin antibody (Cell
Signaling) diluted in PBS for 45 minutes at room temperature. Cells were then washed with PBS

for 15 minutes on a rocker and then exposed to AlexaFluor 594 conjugated goat-anti-rabbit 1gG
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antibody (Life Technologies) diluted in PBS for 45 minutes at room temperature in the dark.
Cells were washed in TBS (150 mM NacCl, 20 mM Tris, pH 7.4) for 15 minutes on a rocker in the
dark followed by nuclear counterstaining with 500 nM 4’,6-Diamidino-2-phenylindole (DAPI,
Sigma) for 10 minutes in the dark at room temperature. Lastly, coverslips were washed again in
TBS for 10 minutes on a rocker in the dark at room temperature and then mounted on

coverslips using Fluoromount-G (Southern Biotech).

Metaphase Spread and Fluorescence In Situ Hybridization

Saos2 and NIH3T3 cells were plated in 6 cm dishes and treated with 2-CEES as described above.
After 2-CEES treatment, media in both treated and untreated dishes was replaced with normal,
complete media without 2-CEES and incubated for an additional 5 days. Cells were split as
necessary to maintain subconfluent cultures. After the 5 day incubation, cells were treated
with 0.5 pg/ml colcemid (Gibco) for 4 hours. Cell media was harvested and retained since it
contains many mitotic cells. The remaining adherent cells were washed with PBS, which was
retained with the media, and the cells were trypsinized and harvested. The media, wash, and
cells were combined and centrifuged to pellet cells. The pellet was resuspended in warm (37°C)
hypotonic buffer (75 mM KCl). 5 drops of fixative solution (methanol:glacial acetic acid, 3:1)
was added while gently vortexing. Cells were centrifuged, resuspended in fixative solution, and
incubated for 10 minutes at room temperature 3-4 times with cells suspended in a final volume
of 300 pl of fixative solution. Positively-charged glass slides (Fisher) were soaked in water for 1
minute, followed by a 2 minute soak in methanol. Slides were dipped in water until the water

ran smooth. Fixed cells were then dropped onto a prepared, positively-charged glass slide
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(Fisher) from a height of 18-24 inches and then allowed to air dry. Cells were then stained with
500 nM DAPI in the dark at room temperature for 10 minutes, followed by 3-4 quick washes
with TBS. A coverslip was added to each slide using Fluoromount-G (Southern Biotech). Images
of mitotic cells were collected using a Zeiss Axiolmager A2. A minimum of 50 cells was collected
for each treatment condition, and the number of chromosomes per cell was counted and

grouped in ranges of 5 chromosomes (Figure 3).

Results

Effect of 2-CEES on cell viability
We first needed to determine an effective concentration of 2-CEES to use in our experiments. If
the concentration was too high, cells might simply die before a measurement could be made. If
the concentration was too low, an effect on centrosome number might not be observable. To
determine an appropriate concentration, we established a toxicity curve (Figure 1). We first
determined an appropriate concentration range to test by doing a literature search (Cook and
Van Buskirk, 1997; Qui et al., 2006; Rancourt et al., 2012; Tewari-Singh et al., 2011). The results
indicated a range of 0-1,000 uM treated anywhere from 2 hours to 24 hours. Ultimately, we
decided to evaluate a range of 0-1,000 uM over a 24 hour period.
To do this, cells were plated overnight and exposed to 2-CEES in increasing concentrations for
24 hours. Cell viability was then evaluated using both trypan blue and resazurin assays. Trypan
blue is a blue dye that is taken up by dead cells, but actively excluded from live cells (Altman et
al., 1993). Thus, dead cells appear blue, while live cells appear colorless in a microscope. In this
9
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case, the total number of live cells was determined using a hemacytometer (Figure 1A). As
expected, the concentration of live cells decreased as the concentration of 2-CEES increased.

To corroborate our findings with the trypan blue assay, we also employed a fluorescent assay
where resazurin, a blue, non-fluorescent molecule is reduced to the pink, fluorescent resorufin
by a myriad of suspected enzymes, mostly mitochondrial (O'Brien et al., 2000). The resulting
chemical change can then be monitored either colorimetrically by measuring the absorbance at
600 nm or fluorometrically at peaks of 560 nm (excitation) and 590 nm (emission), which is
directly proportional to the number of live cells in each well (Sigma product insert). Here, cells
were seeded and treated as with the trypan blue assay, but after 2-CEES treatment, cells were
incubated in 44 uM resazurin for 2 hours followed by fluorescence detection at 550 nm
(excitation) and 600 nm (emission). The mean fluorescence intensity of each well was
recorded, blank values subtracted for each treatment, and normalized to 0 uM 2-CEES (Figure
1B). Saos2 and NIH3T3 cells showed an overall decrease in live cells as the concentration of 2-
CEESincreased up to 1000 uM in both trypan blue and resazurin assays. Taking together
published treatment concentrations and our empirical data, we decided to treat cells with 250

UM 2-CEES over a 24 hour period for our subsequent studies.

2-CEES induces centrosome amplification
Since mustard gas is known to induce oxidative stress (Pal et al., 2009), and since oxidative
stress has been shown to induce centrosome amplification (Chae et al., 2005), we next wanted
to investigate the possibility that 2-CEES could induce centrosome amplification in Saos2 and
NIH3T3 cells. Todo this, we again treated cells with 2-CEES for 24 hours and then
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immunostained for y-tubulin and counterstained with 4’,6-Diamidino-2-phenylindole (DAPI) to
detect nuclei. Centrosomes appeared as a perinuclear, intensely fluorescent dots in interphase
cells (Figure 3A) or monopolar, bipolar, or multipolar spindles in mitotic cells (Figure 3B). After
immunostaining, the number of centrosomes in at least 100 cells was counted. Each cell was
categorized as having one (1), two (2), or more than two (>2) centrosomes per cell, and the
percent of cells in each category was then calculated and graphed (Figure 2A and B). As shown,
most untreated cells exhibited one or two centrosomes per cell, with a small percentage
showing more than two, which is likely due to the fact that these cells lack the tumor
suppressor protein p53 (Fukasawa et al., 1996). However, cells treated with 2-CEES show a
significant increase in the number of cells exhibiting centrosome amplification in both Saos2
and NIH3T3 cells, indicating that 2-CEES can induce centrosome amplification in these cell
types.

We also evaluated the effect of different concentrations of 2-CEES on centrosome amplification
and found a concentration effect in that as the amount of 2-CEES increased from 0 to 500 uM,

the amount of centrosome amplification increased as well (Figure 2C).

2-CEES-induced centrosome amplification correlates with increase aneuploidy

Since chromosome instability is a characteristic of many cancers, it is possible that mustard gas
might hasten the development of cancerthrough centrosome amplification and subsequent
chromosome instability. To determine if 2-CEES treatment can induce chromosome instability,
we performed a metaphase spread to determine the number of chromosomes in cells after 2-

CEES treatment. To this end, Saos2 and NIH3T3 cells were treated for 24 hours with 2-CEES and
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then incubated in 2-CEES-free media for an additional five days. This allowed cells with multiple
centrosomes to go through multiple rounds of mitosis and thereby increase the degree of
anticipated aneuploidy in treated cells. Afterfive days in 2-CEES-free media, a metaphase
spread was prepared and chromosomes were stained with DAPI (Figure 3B). The number of
chromosomes was counted in at least 50 cells in each condition, and the results were grouped
into increasing groups of 5 chromosomes (Figure 3A). Saos2 cells are human osteosarcoma
cells and are thus expected to have around 46 chromosomes, while the modal chromosome
number for NIH3T3 cells is unknown and may be highly varied, although our data suggests that
it may be polyploid at around 70-80 chromosomes per cell. Our data shows an increase in the
number of cells with extremely low or high number of chromosomes in cells treated with 2-
CEES and a concomitant decrease in the number of cells in the normal, modal range of
chromosomes per cell compared to untreated cells (Figure 3A). This is more apparent in
NIH3T3 cells than Saos2, which is likely due to the fact that Saos2 cells are slower growing than
NIH3T3. Regardless, ourdata indicates that 2-CEES induces aneuploidy in Saos2 and NIH3T3

cells.

Discussion

Here we document the first report of the mustard gas analog, 2-CEES, inducing centrosome
amplification in human and mouse cells. We show that subtoxic levels of 2-CEES increase the
number of cells with more than 2 centrosomes per cell compared to untreated cells.
Furthermore, an increase in chromosome instability, as indicated by anincrease in aneuploidy

in 2-CEES-treated versus untreated cells, correlates with centrosome amplification as well.
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Respiratory epithelia, ocular tissue, and skin are the acute, primary targets of mustard gas
toxicity (Nishimoto et al., 1970; Scholz and Woods, 1947), because they are the first tissue
exposed. However, sequelaein deeper tissues have also been shown to correlate with mustard
gas exposure, including neurological (Gadsden-Gray et al., 2012; Thomsen et al., 1998),
reproductive (Azizi et al., 1995), cardiac (Gholamrezanezhad et al., 2007), thyroid (Zojaji et al.,
2009), gastrointestinal (Iravani et al., 2007), and possibly others, suggesting that mustard gas
may be able to affect deeper tissues either directly or indirectly by generating systemic
increases in reactive oxygen species (ROS) or DNA damage. The direct effects of mustard gas
on deeper tissues in animal models are not available, most likely due to the difficulty in
uncoupling its direct effects from those that are due to its ability to generate ROS. Regardless,
our studies show that both embryonic fibroblasts (NIH3T3) as well as human osteosarcoma cells
(Saos2) exhibit biological changes when exposed directly to 2-CEES, indicating that mustard gas
toxicity is not cell type specific.

The mechanism driving centrosome amplification in cells exposed to 2-CEES, and potentially
mustard gas, is obviously unknown. However, some proteins that have been shown to be
involved in centrosome duplication have also been shown to be targets of mustard gas or
mediate mustard gas toxicity. For example, poly(ADP-ribose) polymerase-1 (PARP-1) has been
shown to localize to the centrosome and its loss results in centrosome amplification in mouse
embryonic fibroblasts (Kanai et al., 2003; Wang et al., 2007). Likewise, mustard gas has been
shown to cause PARP cleavage in normal human epidermal keratinocytes (Rosenthal etal.,
2000; Stoppler et al., 1998), indicating that loss of PARP due to mustard gas-induced cleavage

may result in the centrosome amplification we observed.
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p53 also plays a role in centrosome amplification and mustard gas toxicity. p53 is a tumor
suppressor protein that is absent or nonfunctional in the vast majority of cancers (Vogelstein et
al., 2000). It has been shown to regulate centrosome duplication through its transcriptional
activity (Fukasawa, 2005) and by its localization to the centrosome (Shinmura etal., 2007). In
vitro, cells treated with mustard gas or 2-CEES show increased expression (Inturi et al., 2011;
Jowsey et al., 2009) and activation by phosphorylation of p53 (Everley and Dillman, 2010). The
same is seen in vivo (Dillman et al., 2005; Sharma et al., 2009) in rats and mice, respectively.
These results are most likely due to activation of the p53-mediated DNA damage repair
pathway, which results in increased and stable expression of p53 (Jowsey et al., 2009, 2012).
Epidemiologically, there is a correlation between p53 mutations and lung cancer in individuals
exposed to mustard gas both as victims of attacks (Hosseini-khalili et al., 2009) and as workers
in mustard gas factories (Takeshima et al., 1994). However, it cannot be determined if the
mutations existed prior to mustard-gas exposure, or if the mustard gas exposure induced the
mutations that may have led to the increased lung cancer incidence observed in these
individuals. These data suggest that initial, acute exposure to mustard gas initiates stress
pathways, in part mediated by p53, while long-term, or higher dose, exposures cause DNA
damage, in particular the p53 gene, that leads to tumorigenesis. In our experiments, 250 uM 2-
CEES induced centrosome amplification and chromosome instability in Saos2 and NIH3T3 cells,
which lack functional p53, thus supporting the idea that p53 loss is a precursor to mustard gas-
induced carcinogenesis. We are currently studying the role of p53 in mustard gas-induced
centrosome amplification and chromosome instability.
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Figure 1. Toxicity curves of 2-CEES on Saos2 and NIH3T3 cells. NIH3T3 (dotted line) and Saos2
(solid line) cells were incubated in 2-CEES for 24 hours and then subjected to trypan blue assay
(A) or resazurin assay (B). Fortrypan blue assay, cells were harvested and diluted 1:1 in trypan
blue and the number of clear cells was counted using a hemacytometer. For resazurin assay,
cells were incubated in 44 uM resazurin for 2 hours and then fluorescence was measured at
550 nm (excitation) and 600 nm (emission) for 1.2 seconds and normalized to O uM 2-CEES.

Results are the average of at least three independent experiments. Error bars represent
standard error.
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Figure 2. 2-CEES induces centrosome amplification. Saos2 (A) and NIH3T3 (B) cells were
untreated or treated with 0 or 250 uM (A and B) or 0, 50, 250, or 500 uM (C) 2-CEES for 24
hours and then immunostained using antibodies against y-tubulin and counterstained with
DAPI. The number of centrosomes was counted in each of at least 100 cells. p<0.05
comparing treated to untreated cells with more than 2 centrosomes per cell, except for 50 uM,
which was only performed one time.
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Figure 3. 2-CEES-induced centrosome amplification results in monopolar and multipolar mitotic
spindles. Sample images of NIH3T3 cells treated with 2-CEES for 24 hours and then
immunostained with y-tubulin to indicate centrosomes (green) and DAPI to indicate DNA (blue)
(A), or y-tubulin (green), DAPI (blue), and a-tubulin (red) to indicate microtubules (B).
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Figure 4. 2-CEES induces chromosome instability. NIH3T3 (A) and Saos2 (B) cells were treated
with 0 or 250 uM 2-CEES for 24 hours and then incubated in normal media for 5 days. Cells
were treated with 0.5 pg/ml colcemid, fixed, stained with DAPI to visualize chromosomes (C).
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